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Preface

The purpose of this short course is to introduce some models of infectious diseases
that are expressed as systems of ordinary differential equations (ODEs). The back-
ground expected of the reader is the introductory knowledge of ODEs that students
usually acquire in calculus courses, together with matrix theory through eigenval-
ues and eigenvectors. Three good texts for furthering your knowldge of differen-
tial equations are Perko (2001), Schaeffer and Cain (2016), and Sotomayor (1979).
However, we will introduce ideas about ODEs that may be new to you as they are
needed.

The motivation for the course is the Covid-19 pandemic. During the pandemic
the general public has become aware of the importance of mathematical models,
both to anticipate the course of the pandemic and to evaluate possible interven-
tions.

Researchers in mathematical epidemiology attempt to model a wide variety of
infectious diseases using a variety of mathematical tools. To give some context
for the course, we will describe some of this variety of both diseases and tools, and
then describe our focus in this course.

Infectious diseases

Infectious diseases are disorders caused by organisms such as bacteria, viruses,
fungi, or parasites. They have been responsible for enormous suffering and death
throughout recorded history.

New infectious diseases have emerged continually during recorded history and



will continue to emerge in the future. The source is often some sort of transmission
of diseases of other species.

Infectious diseases and their spread can be viewed as byproducts of human
progress. Domestication of animals and human penetration into all global biomes
have helped diseases to migrate from other species to humans. Global trade, which
has existed since ancient times, has helped diseases to spread.

Progress in scientific understanding, sanitation, preventionmeasures, and treat-
ments has led to improved control of many infectious diseases in most parts of the
world. Our increased knowledge and experience have given us remarkable tools
to bring to bear on the Covid-19 pandemic and on the infectious diseases that will
emerge in the future.

Modes of transmission

We will give a few examples of especially deadly infectious diseases and their
modes of transmission.

Plague is caused by a bacterium that is typically transmitted by the bite of a
flea that previously bit an infected animal. It can also be transmitted from person
to person by coughing. Plague pandemics have been among the most devastat-
ing episodes in human history (Frith 2012). The Justinian Plague originated in
Ethiopia and reached Constantinople (now Istanbul) in 541 AD. It killed some
5,000 to 10,000 people per day in the city, and ultimately killed perhaps 100 mil-
lion people in Africa, Asia and Europe over the next few years. There were re-
peated outbreaks over the next 200 years. In Europe, according to Frith (ibid.),
“the social and economic disruption caused by the pandemic marked the end of
Roman rule and led to the birth of culturally distinctive societal groups that later
formed the nations of medieval Europe.”

Plague reappeared in Europe in 1347 (the Black Death), brought from Asia
Minor to Crimea by a Tartar army. It killed a quarter of the population of Europe,
25 million people, by 1350. Outbreaks continued in Africa, Asia and Europe for
over 300 years. The Black Death led to the breakdown of medieval society and
the growth of a middle class.

Plague reemerged in China in 1855 and was not fully controlled for a hundred
years, by which time it had killed 15 million people, mostly in India.

Smallpox is caused by a virus that is spread by contact with patients’ sores, by
contact with contaminated objects such as bedding or clothing, and by coughing
and sneezing. It was already present in 3rd century BC Egypt. It was brought to



the Americas, where it was unknown and there was no immunity, by Europeans
starting in the 1520s. It is estimated that OldWorld diseases, principally smallpox,
killed 90 to 95% of the indigenous population of the Americas. Although vacci-
nation campaigns began in the 19th century, smallpox still killed 300 million to
500 million people during the 20th century. Smallpox was declared eradicated in
1979 (Wikipedia 2021e).

Malaria is caused by a parasite that is transmitted by mosquito bites. There
were 229 million cases of malaria in 2019, leading to 409,000 deaths. 94% of
cases and deaths were in Africa (CDC 2021).

Cholera is a bacterial disease usually spread through contaminatedwater. There
have been seven cholera pandemics since the 19th century. Cholera currently kills
at least 21,000 people per year (WHO 2021). A cholera epidemic in Haiti that be-
gan in 2010, following an earthquake, sickened almost 800,000 people (Wikipedia
2021b).

Acquired immunodeficiency syndrome (AIDS) is caused by the human im-
munodeficiency virus (HIV). It is transmitted sexually, by contact with infected
blood or contaminated needles, and from mother to child. AIDS has killed around
33 million people since it was first identified in the 1980s (Wikipedia 2021f). It
probably jumped from chimpanzees or gorillas to humans in Central Africa in the
1920s (Wikipedia 2021d).

Whilemathematical epidemiologists attempt tomodel all these diseases, in this
course we shall be concerned with infectious diseases that are principally transmit-
ted directly from one person to another.

Influenza is the prime example. It is caused by a family of viruses that are
spread by coughing or sneezing. The first documented flu pandemic began in
Asia in 1510 and spread along trade routes (Wikipedia 2021a).

The so-called Spanish flu pandemic of 1918–1920 killed as many as 100 mil-
lion people worldwide. It was first observed in the state of Kansas in the United
States in January 1918 (Wikipedia 2021h). It rapidly spread to other parts of the
United States and Europe, and then around the world, reaching Brazil by August
1918. In Rio de Janeiro, the Spanish flu killed about 15,000 people and sickened
another 600,000—about 66% of the city’s population. “The city soon saw itself
poised on the verge of collapse. There was not enough food, not enough medicine,
not enough doctors, and not enough hospitals to take in the sickest. …The city
streets gradually were transformed into a sea of unburied bodies, as there were
not enough gravediggers to inter the bodies or caskets in which to place them.”
(Goulart 2005)

Mutations of the 1918 virus are responsible for most influenza cases since then



(Taubenberger and Morens 2006). Flu pandemics in 1957–58 and 1967–68 killed
1 to 4 million people worldwide (Wikipedia 2021g).

Coronaviruses are spread like influenza viruses. SARS-CoVwas first reported
in China in February 2003 and probably originated from bats. It spread to the
Americas, Europe, and Asia and killed almost 800 people. MERS-CoV was first
reported in Saudi Arabia in 2012. It emerged from bats via camels as an interme-
diate host, and has killed over 800 people. SARS-CoV-2, first reported in Wuhan,
China, in December 2019, causes the syndrome known as Covid-19, which is
presently a global pandemic. It is also generally believed to have emerged from
bats. It has caused almost three million deaths as of mid-April 2021 (Wikipedia
2021c).

Models used in mathematical epidemiology

Our course will describe the use of ODEs to model the spread of diseases like in-
fluenza and the coronavirus diseases. ODE models are the ones most commonly
used to anticipate the spread of these diseases and to explore the likely effect of
countermeasures. ODEmodels divide a population into categories, called compart-
ments, and describe the evolution of the populations fractions in the compartments
over time. There may be just two compartments, infected and not infected, or a
large number of compartments that divide the population in whatever ways seem
important.

Here are some other types ofmodels used inmathematical epidemiology, which
we will not discuss.

Stochastic models

Especially at the start of an epidemic, when only a few people are infected, the
element of chance is important in whether the epidemic spreads or dies out. ODE
models are deterministic. Stochastic models take the probabilistic aspect of epi-
demics into account. An introductory reference is Allen (2008).

Network models

Both ODE models and stochastic models divide a population into compartments,
and assume that members of compartments encounter each other at certain rates.
Network models by contrast represent individuals as nodes in a network, and rep-
resent their contacts with each other by edges that connect the nodes. Similar to



stochastic models, disease is transmitted across edges probabilistically. Such mod-
els achieve added realism but are hard to analyze unless strong assumptions are
made. A good reference is Kiss, Miller, and Simon (2017).

Another type of network model uses two types of nodes, one for individu-
als and one for mixing locations such as workplaces, stores, and schools. Edges
connect individuals to mixing locations. These models have become important
during the Covid-19 pandemic due to the availability of aggregate cellphone data
that records the movement of people from homes to mixing locations (Chang et al.
2021).

Agent-based models

Agent-based models are computer programs that simulate the interactions of indi-
viduals (agents) in a given society over a period of time. They can be remarkably
realistic.

In 2006 a group at Imperial College (London) created agent-based models to
simulate flu epidemics in the United Kingdom and United States, based on data
about population density, household size and age structure, schools, workplaces,
and commuting; see Ferguson, Cummings, et al. (2006). The models were repur-
posed in a report of Ferguson, Laydon, et al. (2020) to predict the possible course
of the Covid-19 pandemic in the UK and US. This report greatly influenced the
response of the UK and US governments to the pandemic (Booth 2020).

COMORBUSS, an agent-based model developed in Brazil, is intended to care-
fully model a single city in order to advise which disease mitigation efforts would
bemost effective there (https://comorbuss.org, http://www.cemeai.icmc.
usp.br/ModCovid19/comorbuss).

Problems with agent-based models include the effort required to build them,
the time required to run them, and the fact that their interactions are probabilistic,
so many runs may be required to get good predictions.

PDE models

In ODE models the variables are functions of time only. In partial differential
equation (PDE) models the variables are functions of time and space. Thus PDE
models can be used to study the spread of an epidemic in space. For example,
Berestycki, Roquejoffre, and Rossi (2021) used a PDE model to study the early
spread of Covid-19 by road networks in Italy.

https://comorbuss.org
http://www.cemeai.icmc.usp.br/ModCovid19/comorbuss
http://www.cemeai.icmc.usp.br/ModCovid19/comorbuss


ODE models in mathematical epidemiology
The fundamental ODE model of mathematical epidemiology is the SIR model,
whose name represents its compartments, susceptible, infective, and recovered.
It was introduced in a 1927 paper by A. G. McKendrick, a Scottish physician
with experience fighting malaria in Sierra Leone and dysentery and rabies in India,
and W. O. Kermack, a blind Scottish chemist (Kermack and McKendrick 1927).
We shall discuss their model in Chapter 2. The SIS model (susceptible, infective,
susceptible) is even simpler; we discuss it in Chapter 1.

A basic result underpinning a large part of applied mathematics is the Perron–
Frobenius Theorem, which says, roughly speaking, that the principal eigenvalue of
a positive matrix is positive and corresponds to a positive eigenvector. It is behind
two important results of mathematical epidemiology. One explains why in many
epidemiological models, if the susceptible population is renewed by a mechanism
such as loss of immunity or births, a disease can become endemic; see Hethcote
(1978). Another, the next generation matrix method, shows how to calculate the
basic reproduction number in a complicated model.

The Perron–Frobenius Theorem is beyond the scope of this course. However,
in Chapter 3, we use simpler arguments to show how renewal of the susceptible
population in a simple SIR model can lead to a disease becoming endemic. And in
Chapter 4 we explain the next generation matrix and how to use it, without going
into proofs. Our main example in that chapter is an extension of the SIR model
that represents the main features of Covid-19.

Chapter 5 introduces spontaneous human behavioral change. You know from
experience that when infection levels rise, many people who can stay home will do
so, and many will practice stricter hygiene and social distancing. When infection
levels fall, people relax. This evident fact greatly affects the spread of an infectious
disease, but is rarely accounted for in epidemiological models. How to deal with
human behavioral change is at the research frontier in mathematical epidemiology.
We explain an approach that uses imitation dynamics, an idea from game theory.
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