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Preface

Figure 1: Joseph Fourier

What is a Fourier transform? Why is it so useful? How can we apply Fourier
transforms and Fourier series - which were originally used by Fourier to study
heat diffusion - in order to better understand topics in discrete and combinatorial
geometry, number theory, and sampling theory?

To begin, there are some useful analogies: imagine that you are drinking a
milkshake (lactose free), and you want to know the ingredients of your tasty drink.
Youwould need to filter out the shake into some of its most basic components. This



decomposition into its basic ingredients may be thought of as a sort of “Fourier
transform of the milkshake”. Once we understand each of the ingredients, we
will also be able to restructure these ingredients in new ways, to form many other
types of tasty goodies. To move the analogy back into mathematical language, the
milkshake represents a function, and each of its basic ingredients represents for
us the basis of sines and cosines; we may also think of a basic ingredient more
compactly as a complex exponential e2�inx , for some n 2 Z. Composing these
basic ingredients together in a new way represents a Fourier series.

Mathematically, one of themost basic kinds ofmilkshakes is the indicator func-
tion of the unit interval, and to break it down into its basic components, mathemati-
cians, Engineers, Computer scientists, and Physicists have used the sinc function
(since the 1800’s):

sinc.z/ WD
sin.�z/

�z

with great success, because it happens to be the Fourier transform of the unit inter-
val Œ�1

2
; 1

2
�: Z 1

2

� 1
2

e�2�izxdx D sinc.z/;

aswewill compute shortly in identity (2.5). Somewhat surprisingly, comparatively
little energy has been given to some of its higher dimensional extensions, namely
those extensions that arise naturally as Fourier transforms of polytopes.

One motivation for this book is to better understand how this 1-dimensional
function – which has proved to be extremely powerful in applications – extends
to higher dimensions. Namely, we will build various mathematical structures that
are motivated by the question:

What is the Fourier transform of a polytope?

Of course, we will ask “how can we apply it”? An alternate title for this book
might have been:

We’re taking Poisson summation and Fourier
transforms of polytopes for a very long ride....

Historically, sinc functions were used by Shannon (as well as Hardy, Kotel-
nikov, Nyquist, and Whittaker) when he published his seminal work on sampling
theory and information theory.



In the first part of this book, we will learn how to use the technology of Fourier
transforms of polytopes in order to build the (Ehrhart) theory of integer point enu-
meration in polytopes, to prove some of Minkowski’s theorems in the geometry of
numbers, and to understand when a polytope tiles Euclidean space by translations.

In the second portion of this book, we give some applications to active research
areas which are sometimes considered more applied, including the sphere packing
problem, and the angle polynomial of a polytope.

There are also current research developments of the material developed here,
to the learning of deep neural networks. Inmany applied scientific areas, in particu-
lar radio astronomy, computational tomography, and magnetic resonance imaging,
a frequent theme is the reconstruction of a function from knowledge of its Fourier
transform. Somewhat surprisingly, in various applications we only require very
partial/sparse knowledge of its Fourier transform in order to reconstruct the re-
quired function, which may represent an image or a signal.

There is a rapidly increasing amount of research focused in these directions
in recent years, and it is therefore time to put many of these new findings in one
place, making them accessible to a general scientific reader. The fact that the sinc
function is indeed the Fourier transform of the 1-dimensional line segment Œ�1

2
; 1

2
�,

which is a 1-dimensional polytope, gives us a first hint that there is a deeper link
between the geometry of a polytope and the analysis of its Fourier transform.

Indeed one reason that sampling and information theory, as initiated by Claude
Shannon, works so well is precisely because the Fourier transform of the unit in-
terval has this nice form, and even more so because of the existence of the Poisson
summation formula.

The approach we take here is to gain insight into how the Fourier transform
of a polytope can be used to solve various specific problems in discrete geometry,
combinatorics, optimization, and approximation theory:

(a) Analyze tilings of Euclidean space by translations of a polytope

(b) Give wonderful formulas for volumes of polytopes

(c) Compute discrete volumes of polytopes, which are combinatorial approxi-
mations to the continuous volume

(d) Introduce the geometry of numbers, via Poisson summation

(e) Optimize sphere packings, and get bounds on their optimal densities



Let’s see at least one direction that quickly motivates the study of Fourier trans-
forms. In particular, we often begin with simple-sounding problems that arise nat-
urally in combinatorial enumeration, discrete and computational geometry, and
number theory.

Throughout, an integer point is any vector v WD .v1; : : : ; vd / 2 Rd , all of
whose coordinates vj are integers. In other words, v belongs to the integer lattice
Zd . A rational point is a point m whose coordinates are rational numbers, in
other words m 2 Qd . We define the Fourier transform of a function f .x/:

Of .�/ WD

Z
Rd

f .x/e�2�ih�;xidx; (1)

defined for all � 2 Rd for which the latter integral converges, and where we use
the standard inner product ha; bi WD a1b1 C � � � C ad bd . We will also use the no-
tationF.f / for the Fourier transform of f , which is useful in some typographical
contexts, for example when considering F�1.f /.

Now we can introduce one of the main objects of study in this book, the
Fourier transform of a polytope P , defined by:

O1P.�/ WD

Z
Rd

1P.x/e�2�ih�;xidx D

Z
P

e�2�ih�;xidx; (2)

where the function 1P.x/ is the indicator function of P , defined by

1P.x/ WD

(
1 if x 2 P
0 if not:

Thus, the words “Fourier transform of a polytopeP” will always mean the Fourier
transform of the indicator function of P .

The Poisson summation formula, named after Siméon Denis Poisson, tells
us that for any “sufficiently nice” function f W Rd ! C we have:X

n2Zd

f .n/ D
X

�2Zd

Of .�/:

In particular, if we were to naively set f .n/ WD 1P.n/, the indicator function of a
polytope P , then we would get:X

n2Zd

1P.n/ D
X

�2Zd

O1P.�/; (3)



which is technically false in general due to the fact that the indicator function 1P
is a discontinuous function on Rd .

However, this technically false statement is very useful! We make this claim
because it helps us build intuition for the more rigorous statements that are true,
and which we study in later chapters. For applications to discrete geometry, we are
interested in the number of integer points in a closed convex polytope P , namely
jP \ Zd j. The combinatorial-geometric quantity jP \ Zd j may be regarded as a
discrete volume forP . From the definition of the indicator function of a polytope,
the left-hand-side of (3) counts the number of integer points inP , namely we have
by definition X

n2Zd

1P.n/ D jP \ Zd
j: (4)

On the other hand, the right-hand-side of (3) allows us to compute this discrete
volume of P in a new way. This is great, because it opens a wonderful window of
computation for us in the following sense:

jP \ Zd
j D

X
�2Zd

O1P.�/: (5)

We notice that for the � D 0 term, we have

O1P.0/ WD

Z
Rd

1P.x/e�2�ih0;xidx D

Z
P

dx D vol.P/; (6)

and therefore the discrepancy between the continuous volume of P and the
discrete volume of P is

jP \ Zd
j � vol.P/ D

X
�2Zd �f0g

O1P.�/; (7)

showing us very quickly that indeed jP \ Zd j is a discrete approximation to
the classical Lebesgue volume vol.P/, and pointing us to the task of finding ways
to evaluate the transform O1P .�/. From the trivial but often very useful identity

O1P.0/ D vol.P/;

we see another important motivation for this book: the Fourier transform of a poly-
tope is a very natural extension of volume. Computing the volume of a polytope
P captures a bit of information about P , but we also lose a lot of information.
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