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Preface

Model order reduction (MOR) methods are of growing importance in scientific
computing as they provide a principled approach to approximate many modern
mathematical models of real-life processes, replace high-dimensional PDEs, with
low-dimensional models. The dimensionality reduction provided by MOR helps
to reduce the computational complexity and time needed to solve large-scale en-
gineering systems enabling simulation based scientific studies not possible even a
decade ago.

Examples of real-time simulation settings include control systems in electron-
ics and visualization of model results while examples for a many-query (param-
eterized) setting can include optimization problems and design exploration. In
order to be applicable to real-world problems, often the requirements of a reduced
order model are:

• a small approximation error compared to the full order model,

• conservation of the properties and characteristics of the full order model,

• computationally efficient and robust reduced order modelling techniques.

Mathematically, MOR constructs low-dimensional subspaces, typically generated
by the Singular Value Decomposition (SVD), where the evolution dynamics is pro-
jected. Thus, a high-dimensional system of differential equations is replaced by a
low-rank model in a systematic fashion. Three steps are required for this low-rank
approximation: (i) snapshots of the dynamical system for some time instances, (ii)
dimensionality-reduction of this solution data typically produced with an SVD,
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and (iii) projection of the dynamics on the low-rank subspace. The first two steps
are often called the offline stage of the MOR architecture whereas the third step is
known as the online stage. Offline stages are exceptionally expensive, but enable
the (cheap) online stage to potentially run in real time. This approach has been
successfully applied to e.g. parametrized PDEs and optimal control problems.

A popular and well-established technique in MOR is Proper Orthogonal De-
composition (POD) which, in these notes, is introduced in a discrete setting. The
notes can not replace a text book or research papers on the topic. Hopefully, they
will be enough to get the reader excited and motivated to learn the topic more.
Throughout the notes, we will discuss the method and its Matlab implementation.
More information will be provided by the references1 cited in the manuscript. At
the end of the notes, we will list some possible applications of model order reduc-
tion methods.

The notes are structured as follows: In Chapter 1 we recall the finite differ-
ence method for a parabolic equation. In Chapter 2 we present the Proper Orthog-
onal Decomposition method and in Chapter 3 the Discrete Empirical Interpolation
Method.

Acknowledgments. The author wishes to acknowledge IMPA for this opportu-
nity, Carlos Tomei to support and revise this work. A deep gratitude to the col-
leagues who helped to discover, learn and appreciate this topic: Maurizio Falcone,
Michael Hinze, J. Nathan Kutz and Stefan Volkwein.

1The list of references is by far not complete.



1 Finite
Differences

method

In this chapter we focus on the discretization of evolutive Partial Differential Equa-
tions (PDEs). We review some numerical schemes for PDEs, with emphasis on the
finite difference method. We refer to the manuscripts Falcone and Ferretti (2013),
Leveque (2002, 2007), and Quarteroni and Valli (1994), for finite differences, fi-
nite elements, semi-lagrangian and finite volume methods.

The semi-discretization of a PDE, say the spatial discretization, leads to a sys-
tem of ordinary differential equations

M Py.t/ D Ay.t/C F.t; y.t//; t 2 .0; T �;

y.0/ D y0;
(1.1)

where y0 2 Rd is a given initial data, M;A 2 Rd�d given matrices and F W

Œ0; T �� Rd ! Rd a continuous function in both arguments and locally Lipschitz
with respect to the second variable. It is well–known that under these assump-
tions there exists an unique solution for (1.1). Throughout these notes, we always
assume that the model is given and known.

This wide class of problems arises in many applications, such as e.g. heat
transfer or wave equations. In such cases, the dimension d is the number of grid
points in the spatial discretization of the PDE and can be very large. The solution
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of system (1.1) may be computationally demanding and we will consider reduced
order modeling techniques in the next chapters.

Let y.t/ be a smooth function of one variable. We approximate the time deriva-
tive yt .Ot / by a finite difference approximation based only on values of y in a neigh-
bourhood of Ot . For �t > 0, the standard one sided approximations are given by

yt .Ot / �
y.Ot C�t/ � y.Ot/

�t
; (1.2)

yt .Ot / �
y.Ot/ � y.Ot ��t/

�t
: (1.3)

Approximations (1.2) and (1.3) are of first order, whereas the following centered
approximation

yt .Ot / �
y.Ot C�t/ � y.Ot ��t/

2�t

is of order two. The verification uses the Taylor expansion of y at Ot .
The centered approximation to the second derivative

yt t .Ot/ �
y.Ot C�t/ � 2y.Ot/C y.Ot ��t/

�t2
(1.4)

is also of order two.

Exercise. Compute approximations for the first and second derivative of y.t/ D

et at Ot D 1 for �t D f0:1; 0:05; 0:025; 0:0125g. Verify the order of convergence.
The time discretization of (1.1) might be done in several ways, see Quarteroni,

Sacco, and Saleri (2007). We begin by setting a temporal step size �t > 0 and
defining tk D k�t 2 Œ0; T �, with k D 0; : : : ; m and tm D T . We will denote
by y.tk/ the continuous solution of (1.1) at time tk , whereas by yk the numerical
approximation at time tk . If the method converges yk ! y.tk/ when �t ! 0:

To build a numerical scheme for (1.1) onemight use formula (1.2), say a Taylor
expansion around tk for the time derivative and get the explicit Euler method:

M
ykC1 � yk

�t
D Ayk

C F.tk; y
k/; y0

D y0; k D 0; : : : ; m � 1: (1.5)

This method is explicit: the unknown ykC1 only depends on the solution at the
previous step yk:

MykC1
D yk

C�t.Ayk
C F.tk; y

k//; y0
D y0; k D 0; : : : ; m � 1:
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IfM is not the identity matrix, this is a linear system at each iteration k.
The implicit Euler method is, on the contrary, built using a Taylor expansion

around tkC1: This leads to

M
ykC1 � yk

�t
D AykC1

C F.tkC1; y
kC1/; y0

D y0; k D 0; : : : ; m � 1

(1.6)
where it has been used (1.3) to discretize the time derivative.

The solution (1.6) is defined implicitly and requires the solution of a nonlinear
equation. If we define the function

F.x/ WD M.x � yk/ ��t .Ax C F.tkC1; x// ; (1.7)

our approximation problem at time tkC1 reads F.ykC1/ D 0.
Due to the nonlinearity of the problem, we use Newton’s method to compute

ykC1. Here, we recall the standard Newton’s method, which makes use the com-
putation of JF .x/ the full Jacobian of F.x/. There is a large literature describing
faster variants for inexact Newton’s method (see e.g. Quarteroni, Sacco, and Saleri
(ibid.)).

The Jacobian with respect to x is

JF .x/ WD M ��t .AC JF .tkC1; x// ; (1.8)

where JF is the Jacobian of the nonlinear term F in (1.1).
Newton’s method gives rise to the iteration below, with initial condition x0,

JF .xi /ıi D F.xi / (1.9)
xiC1 D xi � ıi : (1.10)

We iterate until kxiC1 � xik 6 " for a prescribed tolerance ". Each iteration
requires the solution of a linear system of dimension d � d . The choice of x0

is crucial: it is well-known that the method converges quadratically if the initial
condition is close to the solution, e.g. to compute ykC1 one might set the initial
condition x0 D yk : std]close to a solution

The explicit Euler method (1.5) and the implicit Euler method (1.6) have order
of convergence equal to one. However, in the rest of the paper we will work with
the implicit scheme which is more stable than the explicit method.
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1.1 Finite Differences for parabolic PDEs

Let us now consider a one dimensional two points boundary value problem:

zyt .x; t/ D ˛ zyxx.x; t/C f .t; zy.x; t//; .x; t/ 2 .a; b/ � .0; T /;

zy.x; 0/ D zy0.x/

zy.a; t/ D 0 D zy.b; t/

(1.11)

where zy.x; t/ W Œa; b� � Œ0; T � ! R is the unknown, satisfying zero-Dirichlet
boundary conditions, y0.x/ W Œa; b� ! R is the initial condition and f W Œ0; T � �

R ! R is given.

Semi-discretization. Let us start with the spatial discretization of equation (1.11).
We first choose a spatial step size �x > 0 and set xi D a C .i � 1/�x for
i D 1; : : : n and xn D b. We denote by yi .t/ the semi-discrete approximation of
the continuous solution zy.xi ; t / at xi with y.t/ W Œ0; T � ! Rn, and approximate
the second derivative by the centered finite difference (1.4)

zyxx.xi ; t / �
yi�1.t/ � 2yi .t/C yiC1.t/

�x2
; i D 2; : : : ; n � 1: (1.12)

From the boundary conditions in (1.11), y1.t/ D 0 D yn.t/. The semi-discretization
in space of (1.11) leads to a system of ODEs as in equation (1.1), where

A D
1

�x2

0BBBBBB@
�2 1

1 �2 1

1 �2 1
: : :

: : :
: : :

1 �2 1

1 �2

1CCCCCCA ; F .t; y.t// D

0BBBBBBB@

f .t; y2.t//

f .t; y3.t//
:::
:::

f .t; yn�2.t//

f .t; yn�1.t//

1CCCCCCCA ;

of dimension d D n � 2, A 2 Rd�d ; F .t; y.t// 2 Rd and the matrix M is the
identity matrix of dimension d � d in this context.

Exercise. How does the matrix A and the vector F.t; y.t// look like in case of
nonzero Dirichlet boundary conditions zy.a; t/ D ˇ; zy.b; t/ D  and ˇ;  2 R?
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Let us now consider a two dimensional two points boundary value problem,
zyt .�; t/ D ˛�zy.�; t/C f .t; zy.�; t// .�; t/ 2 ˝ � Œ0; T �;

zy.�; 0/ D zy0.x/;

zy.�; t/ D 0 .�; t/ 2 @˝ � Œ0; T �

(1.13)

where ˝ � R2 is an open set, � D .�1; �2/ 2 ˝, zy.�; t/ W ˝ � Œ0; T � ! R is the
unknown, y0.�/ W ˝ ! R is the initial condition and f .t; zy.�; t// W Œ0; T �� R !

R is a given function. The Laplace operator is �y.�; t/ D y�1�1
C y�2�2

. We
discretize the derivatives in space following the one dimensional example. We
use the same step�� > 0 for both �1 and �2, the notation �ij D ..�1/i ; .�2/j / and
approximate y

�
�ij ; tk

�
� yk

i;j . Then

�y
�
�i;j ; tk

�
�
yk

i�1;j � 2yk
i;j C yk

iC1;j

��2
C
yk

i;j �1 � 2yk
i;j C yk

i;j C1

��2
:

Using compact notations, we obtain the matrix A 2 Rn2�n2

A D
1

��2

0BBBBBBB@

T I
I T I

I T I

: : :
: : :

: : :

I T I
I T

1CCCCCCCA ; T D

0BBBBBBB@

�4 1
1 �4 1

1 �4 1

: : :
: : :

: : :

1 �4 1
1 �4

1CCCCCCCA ; (1.14)

with I; T 2 R.n�2/�.n�2/ and I is the identity matrix. Now, the dimension of the
problem is d D .n� 2/2. The order of the matrix A follows the natural row-wise
ordering std]natural row-wise ordering where we take the unknowns along the
bottom row from left to right, fy11; y21; y31; : : : ; yn1g followed by the unknowns
in the second row, fy12; y22; y32; : : : ; yn2g, and so on.

1.2 Matlab code
In this section we provide the Matlab code for (1.13) with

˛ D 0:05;

zy0.�/ D sin.��1/ sin.��2/;
f .t; y.t// D �.y.t/2 � y.t/3/;

� D 10:

(1.15)
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We set˝ D Œ0; 1�2; T D 2;�� D 0:0125;�t D 0:05: The solution at time t D 0

and t D 2 is given in the top of Figure 1.1, whereas the contour lines in the bottom
of the same figure.

Contour lines at time 0

0 0.2 0.4 0.6 0.8 1

1

0

0.2

0.4

0.6

0.8

1

2

Contour lines at time 2

0 0.2 0.4 0.6 0.8 1

1

0

0.2

0.4

0.6

0.8

1

2

Figure 1.1: Top: Numerical approximation of (1.13) at time t D 0 (left) and t D 2

(right). Bottom: contour lines of (1.13) at time t D 0 (left) and t D 2 (right).

In the first part of the code we set the parameters used to define the problem.

clear
clc
close all

%Parameters
dx =0.0125;
PDE.mu = 10;
alpha = 0.05;
dt = 0.05;
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x_tmp = 0:dx:1;
x = x_tmp(2:end-1);
y = x;
n = length(x);
t = 0:dt:2;
PDE.tol = 1e-5; %tolerance Newton's method

%Initial Condition
ic_cond_1 = sin(pi*x);
ic_cond = ic_cond_1'*ic_cond_1;
sol(:,1) = ic_cond(:);

Next, we discretize the Laplace operator. We note we used sparse matrices Matlab
tools.

%Laplace discretization
e = ones(n,1);
A = spdiags([e -2*e e],-1:1,n,n);
A = kron(A,speye(n))+kron(speye(n),A);
PDE.A = alpha*A/dx/dx;

The functions F.x/; JF .x/ in (1.7) and (1.8) are defined below. The Jacobian
here is computed exactly, and defined as a sparse matrix due to the structure of the
nonlinearity which is polynomial.

%Function and Jacobian for Newton's Method
full_sol =@(y,tmp,PDE)...
(tmp-y-dt*(PDE.A*tmp+PDE.mu*(tmp.^2-tmp.^3)));

df_full_sol = @(tmp,PDE)(speye(size(PDE.A))-...
dt*(PDE.A+spdiags(2*PDE.mu*tmp-3*PDE.mu*tmp.^2,0,n^2,n^2)));

Loop over time. We note that the initial condition in the Newton’s method
to compute ykC1 is the solution at the previous time yk . That is true for k D

0; : : : ; m � 1.

%Loop over time
tic
for i =k:length(t)-1
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