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Preface

This book was written as lecture notes for a mini-course on the Einstein constraint
equations (ECE) delivered in the 33rd Brazilian Colloquium of Mathematics. It is
directed to a wide audience of students and researchers interested in the overlap of
Riemannian geometry, geometric analysis and physics. The focus of these notes is
to provide a quite thorough description of the so-called conformal method, which
translates the geometric ECE into an elliptic system of partial differential equa-
tions (PDEs) in a nearly self contained presentation, ranging from classical results
to recent progress. This is a subject which intersects several traditional problems
in geometric analysis, such as scalar curvature prescription and the Yamabe prob-
lem, and which has its roots in the evolution problem of initial data in general
relativity (GR). As such, it has become a whole area of research within mathe-
matical GR and its intersection with classic problems in geometric analysis has
produced plenty of feedback between these areas. We shall assume the reader is
familiarised with classical topics and language in both differential geometry and
Riemannian geometry as well as with standard functional analysis, which is used
within PDE theory. We do not assume the reader to be necessarily acquainted with
elliptic equations and, with this in mind, we have built an appendix compiling the
necessary tools which are used in the core of the book. Also, some of the most re-
current functional analytic tools are also compiled within the first appendix of the
book, with emphasis on Sobolev space theory, which provides the reader with all
the necessary tools to follow the main chapters without many outside references.

The organisation of the book is intended to deliver a clear exposition highlight-
ing the relevance of the analysis of the ECE, theirmany subtleties and an up-to-date



presentation of the results available in this area. In doing so, we have been inspired
by recent literature in the subject, most notably the monograph of Choquet-Bruhat
(2009) and several recent papers such as Holst, Nagy, and Tsogtgerel (2009) and
Maxwell (2005a,b, 2009). We have gone through the classical constant mean cur-
vature (CMC) classifications on closed manifolds originated in Isenberg (1995),
but putting them in light of these recent advances, and thus presented them in
low regularity and also contemplating non-vacuum situations. Along these lines,
we have complemented several of these recent references. Furthermore, we have
made emphasis in the analysis on asymptotically Euclidean (AE) manifolds, incor-
porating boundary value problems, and, as a novelty in a book on the subject, we
have introduced recent advances on far-from-CMC existence of solutions.

Chapter 1 is meant to be an introduction to general relativity with the objective
of setting up the problem, reviewing the context in which the ECE arise, producing
some intuitions and motivating the analysis of boundary problems associated to
black hole solutions as well as highly coupled systems exemplified by charged
fluids. Also, in this chapter we set most of our notational conventions. The topics
here included are standard for any specialist in GR, but are intended to serve as
a good introduction for the unfamiliarised reader, from whom we do not assume
any sophisticated knowledge of physics.

Chapter 2 starts by presenting the conformal method and translating the ECE
into a geometric elliptic system. In doing so, we contemplate very general sit-
uations which incorporate the conformal formulation of the Gauss–Codazzi con-
straints coupled with a further electromagnetic constraint. Then, we start our anal-
ysis with the CMC case admitting sources which allow the system to be fully de-
coupled and thus the core of the analysis is devoted to the associated Lichnerowicz
equation. During this chapter we will give a near state-of-the-art presentation of
this problem following Maxwell (2005a), and therefore establishing an Lp-low-
regularity complete CMC classification on closed manifolds which incorporates
several physical sources. In the process of doing so, we shall review results con-
cerning the Yamabe classification in this low regularity setting.

In Chapter 3, we move to the analysis of the Lichnerowicz equation on AE
manifolds and introduce boundary value problems which model black hole initial
data within the conformal method. We deliver a quite self-contained presentation
of the necessary elliptic theory on AE manifolds, which appeals to analysis on
weighted Sobolev spaces. We introduce the basic machinery associated to these
problems merely assuming basic acquaintance of the reader with the correspond-
ing theory on compact manifolds. We shall present a wide variety of results asso-
ciated to classical papers such as Bartnik (1986), Cantor (1981), Choquet-Bruhat



and Christodoulou (1981), Lockhart (1981), McOwen (1979), and Nirenberg and
Walker (1973). After doing this, the main results related to the ECE will be an
exposition of Maxwell (2005b).

Chapter 4 is devoted to a presentation of far-from-CMC results. These are
quite recent advances in the analysis of the ECE which rely on the application
of some fixed-point-theorem ideas and make use of the full machinery developed
in previous chapters. We shall first review some near CMC results, attainable
through implicit function techniques, and then provide a presentation of the far-
from-CMC results established in Maxwell (2009), which followed the pioneering
work of Holst, Nagy, and Tsogtgerel (2009). These results concern the coupled
ECE in vacuum on closed manifolds. Finally, we will move towards the analysis
of the ECE for a charged perfect fluid on AE manifolds with black hole boundary
data and present the far-from-CMC results of Avalos and Lira (2019).

Although during the main core of the text the reader is assumed to be famil-
iarised with elliptic theory on closed manifold, in order to provide a self-contained
presentation, we have provided most of the necessary tools within two appendixes,
where the reader can consult all the results which are used in the main chapters.
The first of these appendixes is concerned with some functional analytic tools
while the second one with elliptic theory. Since these are extensive areas on their
own right, our presentation has been more expository in nature, attempting to pro-
vide the reader with full proofs whenever possible, and, when the details exceed
the scope of these notes, provide full references as well as the basic intuitions on
the ideas behind the actual proofs.

We expect these notes to help researchers within theoretical physics and pure
and appliedmathematics to become familiarised with some of themany interesting
problems in the analysis of the ECE. Some related topics had to be left outside
due to time constraints for our course, but a thorough list of references has been
provided which the interested reader can use to substantially expand the scope of
this book.
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1 Introduction to
general

relativity

The objective of these notes is to analyse the so-called Einstein constraint equa-
tions (ECE). Naturally, these equation arise in the context of general relativity
(GR), more specifically within the initial value formulation of this theory. In par-
ticular, solution to the ECE provide us with suitable initial data which we can
then evolve into solutions of the space-time Einstein equations. Being GR the
best known description of gravitational phenomena up to this date, this alone pro-
vides enough motivation for the analysis of the ECE. Nevertheless, from a purely
mathematical standpoint, they relate with classical problems in Riemannian geom-
etry, such as scalar curvature prescription problems and related geometric partial
differential equation (PDE) problems, which further motivates their analysis.

The aim of this first introductory chapter is to provide a review of the setting
where the ECE appear naturally, which is the initial value formulation of GR. In
this waywe canmost effectivelymotivate their relevance, present model situations
of interest and provide intuitions about what is expected to occur in their analysis.
Since this is a topic which gathers researchers and students ranging from theoret-
ical physics to geometric analysis, we intend to review several notions which are
well-known to experts in each of these areas and should be within reach without
too much effort for those who are not. In doing so, we will assume acquaintance
with differential geometry as well as Riemannian and semi-Riemannian geome-



2 1. Introduction to general relativity

try.1 As a remark regarding notational conventions, let us highlight that, besides
standard notations within geometry, we will use whenever it may be more con-
venient Einstein’s index and summation conventions for coordinate expressions,
without further comments.

With the above in mind, the organisation of this chapter will be as follows.
First, we will review some definitions and results related specifically to Lorentzian
geometry. Our main motivations here will be to introduce enough language from
causality theory so that, later on, we can introduce notions such as black hole
solutions as well as those of Cauchy hypersurfaces and global hyperbolicity. Then,
we will present the skeleton of the theory of special relativity. There, the aim is
to introduce notions that will be of relevance in subsequent analysis, such us the
basic fields which we shall couple to gravity and for which we shall analyse the
existence of appropriate initial data. After this, we will promote this discussion to
the context of GR, introducing the Einstein equations and presenting these relevant
systems in this general context. Also, we will try to develop some intuitions by
presenting a few classical well-known exact solutions. In particular, we intend to
provide some rudimentary intuitions concerning black hole solutions by describing
the Schwarzschild solution. The objective at this point will be to provide us with
the right notions to motivate our discussion on black hole initial data. But, before
doing this, we will describe the initial value formulation of general relativity. This,
in particular, is a topic which deserves a complete book on its own due to its many
subtleties (which the interested reader can actually find, for instance, in Ringström
(2009)),2 and therefore we will merely review those results which are of most
relevance to us.

1.1 Some elements of Lorentzian geometry

Let us now introduce some notions related to Lorentzian geometry, most of which
can be found in standard references, such as Choquet-Bruhat (2009), Hawking and
Ellis (1973), and O’Neill (1983) as well as references therein. Let us first state that,

1If needed, the interested reader can consult differential geometric topics in classic textbooks
such as J. M. Lee (2013) and Spivak (1999e), Riemannian geometry topics in do Carmo (1992)
and Spivak (1999a,b,c,d) and textbooks adapted to semi-Riemannian geometry such as Bishop and
Goldberg (1980) and O’Neill (1983).

2We further recommend references such as Choquet-Bruhat (2009) for a self-contained presen-
tation of the general problem, as well as Christodoulou and Klainerman (1993) and Klainerman and
Nicolò (2003) for issues related to the stability of Minkowski and Dafermos and Rodnianski (2013)
for topics related with black hole evolution and stability.



1.1. Some elements of Lorentzian geometry 3

during all this text, manifolds will be assumed to be Hausdorff and second count-
able and, whenever specifying the dimensionality of a manifoldM is relevant, we
writeM d for a d -dimensional manifold.

Definition 1.1.1. A semi-Riemannian manifold .V; g/ will be called Lorentzian if
the metric g has constant index equal to 1.

Let us recall that the index of a symmetric bilinear form on a vector space is
defined to be the dimension of the largest subspace where its restriction is negative
definite. Therefore, using a local orthonormal frame f�gn˛D0, we can write g as

g D ��0 ˝ �0 C

nX
iD1

� i ˝ � i :

As above, we will typically reserve the 0-th direction to be the one over which g is
negative definite. In particular, the above shows that one can split tangent vectors
v 2 TpV into three cases, which determine their causal character.

Definition 1.1.2. Let .V; g/ be a Lorentzian manifold and let p 2 V . We will say
that a vector v 2 TpV , v ¤ 0, is time-like if gp.v; v/ < 0; light-like (or null)
if gp.v; v/ D 0 and space-like if gp.v; v/ > 0. Along these lines, we define the
light-cone (or null-cone) at p as the subset of TpV formed by all the null-vectors.

Whenever we consider a smooth curve  W I � R 7! V , if its causal character
is constant, that is, if  0 is everywhere time-like, null or space-like, then we will
say that  is time-like, null or space-like respectively. Clearly, an arbitrary curve
will not fall into any of these categories since its causal character may change, but,
in particular, geodesics have a fixed causal character.3 In order to clarify some
of this terminology, let us anticipate that, in the context of relativity theory, mas-
sive particles trace time-like paths in space-time while massless particles (such as
photons) trace light-like paths. On the other hand, since no signal can travel faster
than light, space-like paths do not represent the dynamics of any kind of particles.
In particular, points which are space-like related do not have the possibility of in-
fluencing each other. We will therefore say that a curve is causal if it is either
time-like or light-like.

Let us now highlight the special role played the the following Lorentzian man-
ifold.

3During these notes, we will always work with Riemannian (metric compatible and torsion-free)
connections, and therefore parallel transport is an isometry.



4 1. Introduction to general relativity

Definition 1.1.3. The manifold RnC1 equipped with the Lorentzian metric � given
by

� D �dx0 ˝ dx0 C

nX
iD1

dxi ˝ dxi ;

where fx˛gn˛D0 stand for (global) canonical coordinates for Rn, is referred to as
the Minkowski space-time, and we will denote it by MnC1.

Therefore, just as Euclidean space is the local model of a Riemannianmanifold,
in a Lorentzian manifold .V nC1; g/ we have .TpV; gp/ Š MnC1. In particular,
the Minkowski space-time is the arena where special relativity takes place.

We will now endow our Lorentzian manifolds with further structure than the
minimal one imposed above. In particular,wewill always consider time-orientable
Lorentzian manifolds, which we shall also refer to as space-times.

Definition 1.1.4. (O’Neill 1983, Page 145) Let .V; g/ be a Lorentzian manifold.
At each point p 2 V , in TpV we have two null-cones. A choice of one of these
null-cones is a time-orientation for TpV . A smooth function � on V which assigns
to each p 2 V a null-cone in TpV is said to be a time-orientation for V . We say
.V; g/ is time-orientable if it admits such a time-orientation function.

It is straightforward to see that a Lorentzian manifold is time-orientable if and
only if it admits a (global) time-like vector field (see, for instance, O’Neill (ibid.,
Lemma 32, Chapter 5).) Although in time-orientable Lorentzian manifolds there
is a consistent way to distinguish past from future, these are still quite general
structures which may inherit some exotic (maybe undesirable) properties. For
instance, any compact Lorentzian manifold admits a closed time-like curve (see,
for instance, O’Neill (ibid., Lemma 10, Chapter 14)). Since, within physics, causal
paths represent the history of actual particles, this property is typically deemed
as pathological allowing for potential travels to the past, and therefore excluded.
Such exclusion is made by appealing to topological properties which guarantee a
good causal structure on our space-time. Let us therefore introduce the relevant
concepts.

Let .V; g/ be a (time-orientable) Lorentzian manifold and p; q 2 V .4 Then,
we will write:

1. p � q if there is a future-pointing time-like curve in V from p to q;
4From now on, the time-orientability hypothesis will be implicitly assumed.



1.1. Some elements of Lorentzian geometry 5

2. p < q if there is a future-pointing causal curve in V from p to q;

3. p 6 q if either p < q or p D q;

4. Given a subset A � V , we define the chronological future IC.A/ and past
I�.A/ of A by

IC.A/
:

D fq 2 V W 9 p 2 A with p � qg;

I�.A/
:

D fq 2 V W 9 p 2 A with q � pg;

and the causal future J C.A/ and past J �.A/ of A by

J C.A/
:

D fq 2 V W 9 p 2 A with p 6 qg;

J �.A/
:

D fq 2 V W 9 p 2 A with q 6 pg:

There are several immediate consequences of these definitions, such as the
fact the � is always an open relation, implying that IC.A/ is always open, and
also some subtleties, such as the fact that J C.A/ is not always closed (for a sim-
ple counter example, see O’Neill (ibid., Example 4, Chapter 14)). Nevertheless,
since we shall only use this language to introduce relevant concepts and results,
we will not be concerned with such subtleties and refer the interested reader to
standard references, such as O’Neill (ibid.) or Hawking and Ellis (1973). Let us
now introduce the following causality condition, which is related to our previous
discussion.

Definition 1.1.5. Let .V; g/ be a Lorentzian manifold. We will say that the strong
causality condition holds at p 2 V if for any given neighbourhood U of p there is
a neighbourhood V � U of p such that every causal curve with endpoints in V is
entirely contained in U .

The above causality condition is basically tailored to exclude the possibility
of almost closed causal-curves, since it implies that causal curves which leave a
fixed neighbourhood of p 2 V cannot return to arbitrarily close to p. Again,
deleting appropriate subsets of simple Lorentz manifolds can be shown to create
a Lorentzian manifold without closed causal curves but with causal curves which
are almost closed, and we intend to avoid this. In fact, it can be seen that if the
strong causality condition holds in a compact subsetK of a space-time .V; g/, then
future-inextendible causal curves in K eventually leave K and never return to it
(O’Neill 1983, Lemma 13, Chapter 14).
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