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1 Introduction

This series of lectures present new results on statistical model selection for stochas-
tic systems. The majority of the results to be discussed are original and first ap-
peared in several recent papers co-authored by the authors of these notes. They
all share a common feature, namely, they propose a new conceptual framework
to assign appropriate models to specific samples of scientific data, displaying non
trivial interactions in time and space.

The papers in which these notes are based found their original motivation in
problems and data coming from linguistics or biology. In spite of their original
specific motivation, we do believe that the models and statistical procedures pre-
sented here can be applied to a large variety of data sets, produced by different
types of scientific data sets, representing time evolutions with structural time and
space dependencies. This belief justifies the existence of the present notes.

The models and statistical procedures discussed here are interesting from an
applied point of view, but not only. Actually they are also interesting from a purely
theoretical point of view, as mathematical objects. In fact, all the results presented
here have been rigorously proved and these proofs are presented in the notes. How-
ever, this rigour should not scare applied researchers. These notes are written in
such a way the models, statistical procedures and results are presented in an intu-
itive way. Proofs appear only in a separated section at the end of the chapters. They



2 1. Introduction

are there to be read by those interested in the technical details which are necessary
to prove the theorems associated to the properties of the models and procedures.
Those who are only interested in the application of the models presented in the
notes can skip the proofs.

Let us now summarise the goal content of these notes. Let us start by dis-
cussing the meaning of the title: statistical model selection for stochastic systems.

What is statistical model selection?
Statistical model selection is a domain of Statistics. It refers to a most important
issue, namely, how to assign models to samples of experimental data.

What is a model?
A model is a description of a procedure which is able to generate samples with
the same statistical features displayed by the sample of experimental data we are
analysing. By procedure we mean, for instance, a computational algorithm able
to generate a string of symbols.

Example: if the sample is a string of symbols, a possible model is a computa-
tional algorithm, producing sequentially the symbols, one by one, by taking into
account, at each step, the last symbols already generated.

A naive model could, for instance, assume that each next symbol is produced
independently of the string of past symbols. Or it could assume that each next
symbol depends only on the last symbol already generated. This class of mod-
els was introduced by the Russian mathematician Andrey Andreyvich Markov in
1913 tomodel the occurrence of consonants and vowels in Pushkin’s poemEugene
Oneguin (Markov 2006).

We could generalise Markov’s original assumption and assume that each next
symbol depends on the last k symbols, where k is a fixed integer greater or equal 1.
More recently, in 1983, the Finish information computer scientist Jorma Rissanen
observed that typically string of symbols produced by scientific experiments have
a dependence from the past which is not fixed, but has a length which is a function
of the past itself. This leads Rissanen to introduce what was latter called the class
of chains with memory of variable length.

What statistics has to do with this?
The intrinsic randomness of typical samples of scientific data makes it unavoid-
able to use statistical criteria to select a model. In other words, we do not look for
a procedure that generates a sample which is identical to the original sample of sci-
entific data; instead we look for a procedure that is able to generate samples with
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the same statistical features of those displayed by the sample of experimental data.

What is the motivation of this quest for models?
In 1867, the physicist von Helmholtz observed that the human brain does statis-
tical model selection all the time, by making hypothesis and assigning models to
sequences of stimuli, in order to be able to make predictions about what will occur
in the near future. This neurobiological ability was called unconscious inference
by von Helmholtz.

Assigning models to stimuli, in order to be able to make predictions about the
future stimuli is crucial to be able to make good choices in real life, in all kind of
situations, from driving a car without touching or being touched by other vehicles,
to simply surviving in a hostile environment.

Less dramatically, other examples of the need of statistical model selection in
real life, include being able to make reliable predictions about the time evolution
of the stock market, of the weather, of the options of a set of voters, etc.

In computer science assigning models to string of bits is necessary to com-
press data. Medical diagnostic imaging is essentially a matter of statistical model
selection. More generally, in all branches of science assigning models to samples
of data is necessary to understand to structure and typical features of samples of
scientific data.

What are the classes of models that will considered in this series of lectures?
In the lectures two classes of stochastic systems will be considered. First of all,
the class of stochastic chains with memory of variable length, introduced by Jorma
Rissanen in his 1983 seminal paper: A universal system for data compression (Ris-
sanen 1983).

The title of the paper refers to the fact that models in this class are dense in
the class of chains with memory of infinite order. This means that any stationary
finite sample of symbols can be well approximated by models in this class.

From an applied point of view these models are interesting because they are
able tomaximise the likelihood of a sample, and simultaneouslyminimise the num-
ber of degrees of freedom of the model. This means that they are good candidates
to approximate real life samples of data, in a greedy way.

We will also work with interacting systems of point process with memory of
variable length and in particular systems of interacting chains with memory of infi-
nite length. They extend Rissanen’s’ ideas to systems with space-time interactions,
which are required to deal with medical imagery, multiunit records of neuronal ac-
tivity and samples representing systems with many components interacting in time
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and space. From a mathematical point of view, this class of systems extends in a
non trivial way class of interacting Markov systems introduced by Spitzer (Spitzer
1970).

Is this a course in Probability Theory or is this a course in Statistics?
In this series of lectures, we introduce probabilistic models which are interesting
mathematical objects by themselves. We also discuss how these mathematical
models can be used to model sets of scientific data.

To apply themodels to data analysis, is necessary to study in a rigorous way the
properties of the algorithms used to select the model which best fits the data. This
requires proving theorems which are mathematically challenging and technically
difficult.

Besides discussing the mathematical rigorous framework required to make sta-
tistical analysis with these models, we also face the challenge of analysing real
scientific data, with samples and scientific questions coming from linguistics, pro-
teomics and neurobiology.

Is this course related to Data Science?
The answer is clearly: yes! Data Science’s goal is to assign models to huge sets
of data, in order to make predictions, or to classify data, putting together data
with same features. It turns out that identifying essential features in the data is
rarely a task which can be solved by naive “visual inspection”. Real classification
necessarily requires the identification of a model able to generate samples with the
same statistical features as those displayed by the original data set.

A naive point of view which considers that Data science requires only compu-
tational power will only be able to produce superficial and non interesting results.
To be successful Data Science requires the development of new classes of stochas-
tic systems and new statistical selection procedures. This is precisely the goal of
this series of lectures.

By the way, one of the articles that will be discussed in the lectures, A. Galves,
C. Galves, et al. 2012, has received in 2020 the Johannes Kepler award discerned
for the first time by the SBMAC, the Brazilian Society for Applied and Computa-
tional Mathematics. The name of the award comes from the fact Johannes Kepler
can be considered the first data scientist in history.

So the answer is yes. This course is clearly related to Data Science. We hope
that they will be useful for young researchers interested in the stochastic modeling
of very large samples of complex data.
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2 Stochastic
chains with
memory of

variable length

In this chapter we introduce the main definitions concerning stochastic chains with
memory of variable length. We also describe the main algorithms in the literature
to estimate the parameters and the structure of the context tree associated to the
model. The material in this chapter is based mainly on the articles A. Galves,
C. Galves, et al. (2012), A. Galves and Leonardi (2008), Garivier and Leonardi
(2011), and Leonardi (2010).

2.1 Model definition

The idea behind the notion of stochastic chains with memory of variable length is
that the probabilistic definition of each symbol only depends on a finite part of the
past and the length of this relevant portion is a function of the past itself. The mini-
mal relevant part of each past is called context. The set of all contexts satisfies the
suffix property which means that no context is a proper suffix of another context.
This property allows to represent the set of all contexts as a rooted labeled tree.
With this representation the process is described by the tree of all contexts and an
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associated family of probability measures, indexed by the tree of contexts. Given
a context, its associated probability measure gives the probability of the next sym-
bol for any past having this context as a suffix. In the sequel we put these ideas in
formal terms.

2.1.1 Irreducible trees

We write N to denote the set of natural numbers f0; 1; 2; : : :g. The set of inte-
gers f: : : ;�1; 0; 1; : : :g is denoted by Z. The set of strictly negative and positive
integers are denoted by Z� and ZC, respectively.

Let A be a finite alphabet. We denote by jAj the cardinal of the set A. For
integersm; n 2 Z withm 6 n, we will use the shorthand notation wmWn to denote
the string .wm; : : : ; wn/ of symbols in the alphabet A. The length of this string
will be denoted by `.wmWn/ D n�mC 1. Ifm > n we let wmWn denote the empty
string �. For any j 2 N, we let Aj denote the set of strings in A having length
j , in particular A0 D f�g. We also let A? D [j >0A

j denote the set of all finite
strings on A and we denote by A1 the set of all left-infinite sequences w�1Wn

with symbols in A.
We say that a sequence sj Wk is a suffix of a sequencewmWn if `.sj Wk/ 6 `.wmWn/

and sk�i D wn�i for all i D 0; : : : ; k � j . This will be denoted as sj Wk � wmWn.
If `.sj Wk/ < `.wmWn/ then we say that s is a proper suffix of w and denote this
relation by s � w. Given a sequence w, the maximal proper suffix of w (obtained
bu removing the leftmost symbol) will be denoted by suf.w/.

Definition 2.1. A subset � � A? [ A1 is a tree if it satisfies the suffix property,
what means that no w 2 � is a proper suffix of another s 2 � . If in addition, a
tree � satisfies the irreducibility property, which states that no string belonging to
� can be replaced by a proper suffix without violating the suffix property, then it
is called irreducible tree.

It is easy to see that the set � can be identified with the set of leaves of a rooted
tree with a finite set of labeled branches. Elements of � will be denoted either as
w or as w�kW�1 if we want to stress the number of symbols in the string.

Example 2.2. Suppose A D f0; 1g. Consider the following sets of sequences with
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Figure 2.1: Examples of the tree representation of the sets �1, �2 and �4 that satisfy
the suffix property in Definition 2.1. The sequences in the set (read from left
to right) are read in the tree bottom-up (from leaves to root). The set �2 is not
irreducible, becausewe can substitute the sequence 100 by the sequence 00without
violating the suffix property. The set �4 is infinite then we represent a truncated
version with sequences of length up to three.

symbols in A.

�1 D f00; 010; 110; 1g

�2 D f100; 10; 1g

�3 D f000; 00; 100; 10; 1g

�4 D f10�kW�1 W k D 0; : : : g [ f0�1W�1g :

Here, 10�kW�1 represents the sequence obtained by concatenating a 1 with k 0’s.
Similarly, the sequence 0�1W�1 is a semi-infinite sequence with all 0’s. It can be
seen that �1 and �4 correspond to irreducible trees over A, satisfying all the con-
ditions in Definition 2.1. On the other hand, �2 does not satisfy the irreducibility
property and �3 does not satisfy the suffix property. As �1, �2 and �4 satisfy the
suffix property, they can be represented graphically as an (inverted) tree where
each sequence is represented by a leaf in the tree, see Figure 2.1.

In the set of all trees over the alphabet A we can define a partial ordering.

Definition 2.3. We will say that � � � 0 if for every v 2 � 0 there existsw 2 � such
that w � v. As usual, whenever � � � 0 with � ¤ � 0 we will write � � � 0.
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