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Preface

This text is a result of the notes written for several Schools. It started with a
series of lectures, Probability and uniformly hyperbolic systems, given by Car-
langelo Liverani in Coimbra in 2008 and the lectures delivered by Mark Demers
and Carlangelo Liverani at the International Conference on Statistical Properties
of Non-equilibrium Dynamical Systems, SUSTC, Shenzhen, July 27 – August 2,
2016. It was then modified and used for the lectures An introduction to the statisti-
cal properties of hyperbolic dynamical systems, delivered by Carlangelo Liverani
at the TMU-ICTP School, Tehran, May 5 – 10, 2018. It has finally reached its
present state for the lectures by Carlangelo Liverani at the 33º Colóquio Brasileiro
de Matemática.

Our aim is not to make a review of the field, but rather to introduce the reader
to some basic modern techniques used to study the statistical properties of chaotic
systems. Here by chaoticwemean uniformly hyperbolic systems. That is, systems
that display a strong uniform sensitivity with respect to initial conditions. We will
stress in particular the so-called functional approach, but we will also provide a
simple introduction to the use of standard pairs and Hilbert metrics, and discuss
some of the relations among these tools.

The goal is to provide the reader with a quick introduction to the literature.
On the one hand we describe in detail the main techniques when applied to the
simplest cases, providing full proofs for the essential general facts of the theory.
On the other handwe try to flesh out the fundamental ideas necessary to understand
the current literature, while avoiding the most technical details.

This note is a partial update with respect to the small review Liverani (2003).



For a much more in depth and technical discussion of transfer operators see Baladi
(2000, 2018).

Our main focus, the functional approach, has its origin in the study of the
Koopman operator Koopman (1931) (acting on L2) starting, at least, with the von
Neumann mean ergodic theorem von Neumann (1932) and further developed by
the Russian school, see Cornfeld, Fomin, and Sinai (1982). An important develop-
ment of this point of view occurred with the study of the transfer operator in sym-
bolic dynamics by Sinai (1968, 1972b), Ruelle (1976a, 1978) and Bowen (1970,
2008).

Next, the functional approach developed further thanks to the work of Lasota
and Yorke (1973), Ruelle (1976b), Keller (1979), Hofbauer and Keller (1982) and,
more recently, Fried (1986), Rugh (1992, 1996), andKitaev (1999), just tomention
a few. This has eventually led to the current theory, which has assumed its present
form starting with Blank, Keller, and Liverani (2002).

The basic idea is to study directly the spectrum of the Ruelle transfer opera-
tor without coding the system (even though the theory can be applied also to the
transfer operator of a system after inducing). In order to do so, it is necessary to
consider the action of the transfer operator on an appropriate Banach (or Hilbert)
space or, more generally, in an appropriate topology. The non trivial part of the
theory rests in the identification of the appropriate topological spaces which, to be
effective, must reflect the geometric features of the dynamics.

In this note we will discuss only uniformly hyperbolic systems, yet the tech-
niques presented here are relevant also in the non uniformly hyperbolic case, al-
though they must be supplemented with essential new ideas such as Young towers,
started by Young (1998); coupling, as introduced by Dolgopyat (2000) and Young
(1999); and Operator Renewal Theory, whose development is due to Sarig (1999).
In fact, it may be interesting to combine different techniques in order to develop
a more effective theory: examples of attempts in this direction are De Simoi and
Liverani (2016) and Maume-Deschamps (2001).

Another of our goals is to explain which properties the above mentioned Ba-
nach spaces must enjoy and to provide a guide for how to construct and adapt them
to the peculiarities of the systems at hand. Also, we will briefly discuss the idea
of coupling in an especially simple case, but we will not provide any details re-
garding Young towers or Operator Renewal Theory. More generally, we will not
discuss non-uniform hyperbolicity nor general partial hyperbolicity (for the latter
we refer to the book Bonatti, Díaz, and Viana (2005)).

The plan of the exposition is as follows: we start, in Chapter 1, discussing the
simplest possible case, smooth expanding maps of the circle. This allows us to il-



lustrate, in the simplest possible setting, the power of the functional approach and
the type of results that can be obtained once such machinery is in place. In par-
ticular, we will show how important properties of the system such as exponential
decay of correlations, the Central Limit Theorem, Large deviation results, stabil-
ity and linear response easily follow from the spectral properties of the transfer
operator.

In Chapter 2, we will discuss the case of attractors, where the need to consider
spaces of distributions first becomes apparent.

In Chapter 3 we develop the theory for the case of toral automorphisms. This
may seem a bit silly as toral automorphisms can be studied directly using Fourier
series. Yet, this will allow us to illustrate, in the most elementary manner, the main
ideas of the theory, including anisotropic Banach spaces and coupling.

Then, in Chapter 4, we collect all the ideas previously illustrated and extend
them to study general uniformly hyperbolic maps. This gives a precise taste of
what the full theory looks like for uniformly hyperbolic systems.

Next, we discuss non-singular flows. By non-singular we mean that the vec-
tor field generating the flow has no zeros. This implies that a Lyapunov exponent
(the one in the flow direction) is necessarily zero. Hence, this is one of the sim-
plest possible partially hyperbolic systems. The other simple classes of partially
hyperbolic systems are skew-products and group extensions. Some of these can
be treated with similar techniques, but we will not discuss them explicitly in this
note.

We will restrict ourselves to the case of contact flows. Although much of
the present theory can be applied, with few changes, to more general hyperbolic
flows, the contact flow case is the simplest example and hence well suited to an
introductory discussion.

There are three main steps in adapting the analysis of the discrete time trans-
fer operator for hyperbolic maps to the semi-group of continuous time transfer
operators for hyperbolic flows:

1. Adapt Banach spaces used for hyperbolic maps to the setting of hyperbolic
flows: the presence of the neutral flow direction makes this a nontrivial
change.

2. Contrary to the discrete-time case, we do not prove the quasi-compactness
of the transfer operator for the time-one map of the flow, but rather for the
generator of the semi-group of transfer operators for the flow; this involves
the use of the resolvent to ‘integrate out’ the neutral direction.



3. The use of the contact form to estimate an oscillatory integral and derive
a spectral gap for the generator of the semi-group and an estimate for the
resolvent close to the imaginary axis (the Dolgopyat-type estimate).

It then follows from some general considerations that a spectral gap for the gener-
ator of the semi-group implies exponential decay of correlations for the flow. This
approach is detailed in Chapter 5.

At last Chapter 6 discusses the extension of these ideas to hyperbolic billiards.
Note that hyperbolic billiards have serious discontinuities, hence albeit the overall
strategy is the same as in the smooth case, there are crucial technical problems to
overcome, problems that delayed the extension of the theory to this type of system
for almost 20 years.

The notes also include several appendices. These are aimed at providing the
reader with some basic knowledge that, while necessary to fully understand the
main text, is not necessarily common knowledge.

Appendix A contains some very basic facts concerning functional analysis.
These are normally covered in a graduate functional analysis course, but, just in
case the reader was distracted, here we provide the minimum necessary to under-
stand the main text.

Appendix B is devoted to a full exposition of the Hennion–Neussbaum theory.
Such a theory underlies much of the current approach, yet it is impossible to find a
full exposition of such results that has as prerequisite only the content of a standard
first functional analysis course. We think that it is better to have full control of the
main instruments used in the field, hence we attempt to fill this expository gap.

Appendix C presents a simplified version of the perturbative theory developed
in Keller and Liverani (1999) and Gouëzel and Liverani (2006). Although not
necessary to understand the main text, this theory is by now a standard tool to
study the dependence of the statistical properties of a system on a parameter or
external influences. Hence, it is natural to add it for completeness.

Appendix D contains the basics of projective cones and Hilbert metrics. Part
of this material can also be found in other books (e.g., Viana (1997)) but we add
it for completeness. Also we emphasize the connection with the Banach space
approach, which is not common knowledge.

Appendix E contains hints to the solutions of the problems in the text. We
strongly recommend that the readers look at this appendix only as a last resort and
only after some hard thinking in order to find a solution.



To conclude we would like to thank all the people that provided us with helpful
suggestions related to this text. They are too many to name but, at least, we must
mention Viviane Baladi, Oliver Butterley, Jacopo de Simoi, Dmitry Dolgopyat and
Sébastien Gouëzel.
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1 Expanding
maps

We start by discussing smooth expanding maps. By a smooth expanding map we
mean a map f 2 Cr.T ;T /,1 r > 2, such that infx jf 0.x/j > �? > 1. Clearly
.f;T / is a topological, actually differentiable, dynamical system. Our first goal is
to view it as a measurable dynamical system, hence we need to select an invariant
probability measure.

1.1 Invariant measures

Deterministic systems often have a lot of invariant measures. In particular, to
any periodic orbit is associated an invariant measure (the average along the or-
bit). Given such plentiful possibilities, we need a criteria to select relevant invari-
ant measures. A common choice is to consider measures that can be obtained by
pushing forward a measure absolutely continuous with respect to Lebesgue.

More precisely, let d� D h.x/dx, h 2 L1.T ;Leb/ and define,2 for all ' 2

1By T wemean the one dimensional torus R=Q. While Cr , as usual, denotes the set of functions
r times differentiable with continuous derivatives.

2Obviously, Leb stands for the Lebesgue measure.
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