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Several problems in mathematics, computer science, machine learning and statis-
tics exhibit inherent symmetries which can be described by a group acting linearly
on a vector space. Oftentimes, these symmetries are implicit or disguised in the
“natural” description of the problems. Thus, many qualitative and quantitative
properties inherent to these problems have laid dormant or unexplored until recent
developments, which made crucial use of the group action structure, allowed for
significant progress in such problems.

In this survey, we will give an overview of the phenomenon described above. Our
emphasis will be on the geometric properties of such group actions and on the
generalization of convexity that arises from natural optimization problems along
group orbits, which we term by geodesic convexity.

1.1 Brief history

In the early days of invariant theory, the period known as classical invariant theory
(late 1800s), the question of understanding geometric properties of plane curves
which were invariant under changes of bases received a lot of attention. Notable
mathematicians who worked on this question at the time include Aronhold, Cleb-
sch, Gordan, Cayley, Sylvester and Hilbert. During this time, their focus was on
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finding functions which associate a number to each curve that was independent of
the choice of basis.

Mathematicians at the time came to realize that such a problem (invariance
under change of basis) was about the action of a group on the ambient vector
space, usually the action of the special linear group SL,,(C), and that the functions
that they were studying were polynomial functions over the coefficients of the
polynomials defining the curves being studied.

A simple example of the problem above, which is familiar to us all (but most
likely not in this language), is the problem of deciding when a quadratic form in
two variables, given by ax? +bxy +cy? € C[x, y], has a double root. As it turns
out, the property of “having a double root” is independent of the choice of basis
(thatis, if we change basis (x, y") = (x, y) A, the quadratic will still have a double
root) and it is characterized by the vanishing of the discriminant A := b? — 4ac.
Thus, the property of having a double root is completely captured by a polynomial
function on the coefficients of the quadratic form (i.e. a, b, ¢).

The major research effort at the time was to determine the set of all polynomial
invariants of “nice” group actions on certain vector spaces. Since the set of all
invariant polynomials forms a C-algebra, one of the main questions at the time,
which was termed the first fundamental theorem of invariant theory, was to prove
whether a group action had a finite set of generating invariants as a C-algebra.

This research effort culminated in Hilbert’s seminal works Hilbert (1890, 1893),
where he proved such fundamental theorems as the Hilbert Basis Theorem, the
Nullstellensatz, the Syzygy theorem, and the rationality of the Hilbert series. Hilbert’s
motivation to prove these theorems was to give a constructive proof that the ring
of invariants was finitely generated, and to give a full description of the ring of
invariants.

While the algebraic side of invariant theory has received much attention since
the nineteenth century, it was only in the seminal works of Mumford and the strik-
ing developments by Kempf, Ness, Kostant and Kirwan, among others, that the
geometric side of invariant theory really flourished. In geometric invariant the-
ory,' given a group G acting on a vector space V, the goal is to understand the
quotient space V /G given by the set of orbits of the group action on V.

In the development of geometric invariant theory by Mumford, a special opti-
mization problem is central: the null-cone problem, which was already defined in
the work of Hilbert (1893). We will study this problem in greater detail in Chap-

I'The setting of geometric invariant theory is more general, and we have decided to remain with
the setting of a group acting on a vector space for simplicity. For the more general treatment we
refer the reader to Mumford, Fogarty, and Kirwan (1994) and Wallach (2017).
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ter 2, but now through the lens of optimization over a Riemannian manifold.

1.2 Examples of scaling problems

In this section we describe some concrete examples of scaling problems which
have seen important progress in recent years by the use of the optimization ap-
proach to geometric invariant theory. The beauty of these concrete examples, apart
from being fundamental problems in their respective subareas of mathematics, is
that we can state them even without the definitions from invariant theory, and we
will do so in order to motivate the reader and to showcase how the inherent sym-
metries of a problem may be disguised in its statement.

1.2.1 Matrix Scaling

Given a non-negative n X n matrix A € Mat,(R), we say that A is doubly-
stochastic if all row and column sums of A are equal to 1. An important problem,
which appears in several disciplines ranging from economics, engineering, trans-
portation theory and computer science, is the question of deciding when one can
“transform” a non-negative matrix A (approximately) into a doubly-stochastic ma-
trix B by multiplying the rows and columns of A by positive scalars. This problem
motivates the following definition:

Definition 1 (Scaling of a matrix). Given a non-negative matrix A € Mat, (R),
we say that Aisa scaling of A if it can be obtained by multiplying the rows and
columns of A by positive scalars. In other words, Ais a scaling of A if there exist
positive diagonal matrices R, C € Mat,(R) such that A = RAC.

As the reader can realize, the approximate version of the question is often

(1) } can be scaled arbitrarily close to a doubly-stochastic
matrix (i.e. the identity) but it cannot be scaled exactly to a doubly-stochastic ma-
trix (since the non-zero pattern of the matrix does not change by scaling). This mo-

tivates us to define a measure for how close a matrix is to being doubly-stochastic:

needed, since the matrix

Definition 2 (Distance to doubly-stochastic). Given a non-negative matrix A €
Mat, (R), define its distance to doubly stochastic to be

ds(A) =D (i = 1>+ ) (¢; = 1)

i=1 j=1
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where r; and ¢; denote the i’ h row sum and the j*" column sum, respectively.

With the definition of distance as above, we can say that a non-negative matrix
A is approximately scalable to doubly-stochastic if, and only if, for every ¢ > 0,
there exists a scaling A, of A such that ds(A4;) < s. We call such a scaling A, an
e-scaling of A.

Thus, given a non-negative matrix A, two natural questions arise: when is a
matrix approximately scalable? If a matrix is scalable, can one efficiently find an
e-scaling, for a given parameter &€ > 0?

We have arrived at the (computational version of the) matrix scaling problem:

Question 1.2.1 (Matrix Scaling). Given a non-negative matrix A € Mat, (R) and
an accuracy parameter ¢ > 0, is there a scaling B of A such that ds(B) < &? If
there is such a scaling, output it.

As mentioned in the beginning of this section, the matrix scaling problem has
historically appeared independently in several scientific areas, and to solve the
matrix scaling problem the following natural iterative algorithm has often been
used: if the matrix is not row-stochastic (that is, the row sums are 1), make it row-
stochastic by properly normalizing the rows. This may change the column sums.
If the matrix is not column-stochastic, make it column-stochastic by normalizing
the columns.

Input: a non-negative matrix A € Mat,(R), ¢ > 0.
Output: a scaling B of A such that ds(B) < ¢, if one exists. NO, otherwise.

e SetB<« A
» For T steps, while ds(B) > e:

1. if B is not row-stochastic, multiply it" row of B by r;(B)~! for all
i €[n]

2. if B is not column-stochastic, multiply j* column by ¢ ;(B)~! forall
Jj €lnl

« If at any point above ds(B) < e, return B, otherwise, after the T steps,
return NO.

Algorithm 1: RAS algorithm

The algorithm above is a special case of a general optimization paradigm
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known as alternating minimization, where to minimize a function one tries to al-
ternately minimize simpler functions in an alternate fashion, where the idea is that
the simpler functions are much easier to optimize (sometimes the optimum for the
simpler functions can even be written in closed form, as is our case).

In Section 1.3, we will see an analysis of the algorithm shown above, as well
as a striking application of using matrix scaling to obtain a deterministic approx-
imation to the permanent of non-negative matrices, and the connection between
matrix scaling and bipartite matchings.

For more background on the matrix scaling problem, we refer the reader to the
surveys Garg and Oliveira (2018) and Idel (2016).

1.2.2 Optimal Transport Distances in Finite Distributions

Given two discrete probability measures 7, ¢ € RfiF over a finite set [d] := {1, 2,
...,d}, we define U(r, ¢) to be the transportation polytope of r and ¢, which is
given by

U(r,c) :={P e Maty(Ry) | Plg=r, PT1;=¢}

where 1, is the all ones vector of dimension d. An element of U(r, ¢) is called a
transportation matrix or joint distribution, as we will now see.

One can view U(r, ¢) as the set of all joint probability distributions of two
discrete random variables X, Y each taking values in [d] := {1,2,...,d} where
X has probability distribution r and Y has probability distribution c. In this case,
each matrix P € U(r,c) issuch that P; ; = Pr[X =i,Y = j].

Given a cost matrix M € Maty (R), the cost of mapping measure r to ¢ us-
ing a transportation matrix P can be quantified by the Frobenius inner product
(M, P) := Tr[M'P]. Thus, we have arrived at the optimal transport problem
between r and ¢ given cost M :

dy(r,c) .= min (M, P).
PeU(r,c)

Optimal transport of measures is a problem of great practical importance, hav-
ing originated in the works of Monge (in 1871) and developed further by Kan-
torovich? (in 1942) in their studies on optimal allocation and transportation of

’Interestingly, Kantorovich is regarded as the father of Linear Programming.
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resources. While the formulation above can be solved via standard convex opti-
mization methods, or more specialized methods for linear programs, the complex-
ity of solving the optimal transport problem above turns out to be O(d3 logd) in
practice, which turns out to be prohibitive for many applications.

In Cuturi (2013), the author proposed to add entropic constraints on the opti-
mal transport problem to find optimal joint distributions which have small mutual
information, as these solutions have applications to machine learning. Thus, Cu-
turi proposed to find solutions in the convex set

Ua(r,c) :={P € U(r,c) | dgr(P || re’) <o}

where o = 0. Moreover, in the same work, Cuturi showed how one can use the
matrix scaling algorithm from the previous section to solving the modified opti-
mal transport problem! This yields a much simpler algorithm with a much better
runtime in practice for computing such distances, and as showed in Cuturi (ibid.),
these new distances have much better practical applications than the unconstrained
original distances.

For more background on optimal transport and its connections to matrix scal-
ing and machine learning, we refer the reader to Cuturi (ibid.), where the con-
nection presented above was first made, and where we drew this example from.
For connections to image retrieval, see the seminal work of Rubner, Tomasi, and
Guibas (2000). For a comprehensive treatment of optimal transport, see Villani
(2008).

1.2.3 Paulsen Problem

The Paulsen problem is a central question in frame theory as discussed in Casazza
and Kutyniok (2013).

Question 1.2.2. Let U = {uy, ...,u,} € C% be a spanning set of vectors satisfy-
ing

. 1—¢ 1+e¢
Vel — <3< ——.

(1.2.1)

What is the minimum distance Z’}zl lvj —u; ||§ overall V = {vq, ..., v, } satis-
fying Equation (1.2.1) exactly'

. 1
Zvj,— Sla YiebllB=
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Note that this is a different normalization, by a factor d, than normally given in
the literature.

Vectors satisfying Equation (1.2.1) are known as e-doubly balanced frames.
The balance properties of doubly balanced frames, where ¢ = 0, are exploited to
give strong results in coding theory and signal processing Casazza and Kutyniok
(ibid.). Constructions of exactly doubly balanced frames are difficult and often rely
on complicated algebraic structures. On the other hand, there are many simple al-
gorithms to construct e-doubly balanced frames. For example, a large enough set
of random vectors will satisfy Equation (1.2.1) for some small & with high probabil-
ity. The Paulsen problem asks, for a given e-doubly balanced frame, whether the
conditions in Equation (1.2.1) can be corrected without moving too much. Since
randomly generated frames are nearly doubly balanced, analyzing the distance
bound in this case is of special importance.

Holmes and Paulsen (2004) studied frames from the perspective of coding the-
ory, and showed that doubly balanced frames were optimally robust with respect
to a single erasure. They also showed that Grassmannian frames, doubly balanced
frames with large pairwise angles, were optimal for two erasures.

To address the difficulty of constructing these structured frames, the authors of
Holmes and Paulsen (ibid.) suggested a simple numerical approach: first generate
random frames, which approximately satisfy Equation (1.2.1), and then correct
the conditions. Random frames are good candidates for both of these settings
because they are approximately doubly balanced and have large pairwise angles
with high probability. One goal of the Paulsen problem is then to validate this
numerical algorithm as a simple method of constructing structured frames. The
formalization below is from Cabhill and Casazza (2013).

Conjecture 1.2.3 (Paulsen Problem). Let p(d, n, &) be the smallest function such
that for all e-doubly balanced U = {uy,...,un} < C?, there exists a doubly
balanced V = {v1, ..., v} € C¥ such that

n
IV —=Ul% =) lv;—ujl3 < pd,n,e).
Jj=1

Then this distance function p can be taken independent of n.

The optimal function p has been unknown for almost twenty years, despite
considerable attention in the frame theory literature. Prior to the work of Kwok,
Lau, Lee, et al. (2017), the only known results on the function p were given
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by Casazza, Fickus, and Mixon (2012) and Bodmann and Casazza (2010), and
showed p < poly(d,n,e) when d, n are relatively prime and ¢ is small enough.

These results left open Conjecture 1.2.3, which was positively resolved in
Kwok, Lau, Lee, et al. (2017).

Theorem 1.2.4 (Theorem 1.3.1 in Kwok, Lau, Lee, et al. (ibid.)). The distance
function can be bounded by p(d.n,e) < d'Y/%e. In particular it can be taken
independent of n.

The new idea in this work was to use scaling algorithms like those studied
recently in Garg, Gurvits, et al. (2016). To carry out this approach, Kwok, Lau,
Lee, etal. (2017) defined a dynamical system which corrected approximately dou-
bly balanced frames. This dynamical system could then be analyzed using tools
from the operator scaling analysis of Garg, Gurvits, et al. (2016). The full proof
of Kwok, Lau, Lee, et al. (2017) required a smoothed analysis approach coupled
with an involved convergence analysis of the dynamical system.

Subsequently, in the aptly titled “Paulsen Problem made Simple”, Hamilton
and Moitra (2019) improved the distance bound to p(d,n,e) < de, using a to-
tally different and much shorter method. This almost matches the known lower
bound, as there are simple examples showing p 2= ¢. Ramachandran (2021) revis-
its the dynamical system approach and closes this gap by using tools from geodesic
convex optimization.

This dynamical system can also be analyzed to give a refined distance bound
for the case of random frames, which answers the original motivation of the Paulsen
problem.

Theorem 1.2.5 (Theorem 1.12 in Kwok, Lau, and Ramachandran (2019)). For
any n = poly(d) large enough, if U = {uy, ...,u,} C R? is generated such that
each u j is independent and uniformly distributed on JiﬁS 4=1"then with high prob-

ability U is e-doubly balanced for ¢ < 5(\/%), and there exists doubly balanced
V such that
IV —UllF < €.

This result validates the numerical approach suggested in Holmes and Paulsen
(2004) to generate doubly balanced frames, and therefore gives a satisfactory an-
swer to the original motivation for Question 1.2.2. It also gives the following
corollary on Grassmannian frames.
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