An introduction to
Characteristic Classes

Jean-Paul Brasselet
An introduction to Characteristic Classes
Preface

1 Introduction

1.1 Manifolds and pseudomanifolds ... 1
1.2 Orientation ... 6
 1.2.1 Orientation of pseudomanifolds 6
 1.2.2 Orientation of manifolds .. 7
 1.2.3 Oriented double covering ... 9
1.3 Poincaré isomorphism (manifolds) 10
1.4 Boundary .. 14
1.5 The Gauß map(s) .. 15
 1.5.1 Generalisation of the Gauß map 16
1.6 Fibre bundles .. 16
 1.6.1 Fibre bundles ... 16
 1.6.2 Vector bundles ... 17
 1.6.3 Examples of fibre bundles – real case 18
 1.6.4 Examples of fibre bundles – complex case 20

2 The “Euler–Poincaré” characteristic ... 24

2.1 The Greek period ... 24
2.2 Maurolico – Descartes – Euler .. 26
 2.2.1 Maurolico (1494–1575) .. 26
 2.2.2 Descartes (1596–1650) ... 26
2.2.3 Euler (1707–1783) ... 28
2.2.4 Descartes’ Theorem is equivalent to Euler Formula 29
2.2.5 Proofs of Euler Formula .. 29
2.2.6 The generalization: Euler–Poincaré characteristic 29

2.3 Poincaré–Hopf Theorem .. 30
 2.3.1 The index of a vector field. 31
 2.3.2 Relation with the Gauß map 36

2.4 Proof of Poincaré–Hopf Theorem 40
 2.4.1 The smooth case without boundary 40
 2.4.2 The smooth case with boundary 44

3 Characteristic classes: smooth case 47
 3.1 General obstruction theory .. 48
 3.1.1 Index of an r-frame ... 50
 3.1.2 General obstruction theory 52
 3.2 Applications .. 55
 3.2.1 Stiefel–Whitney classes 56
 3.2.2 Chern classes .. 60

4 Singular varieties ... 64
 4.1 Stratifications .. 65
 4.2 Angles .. 66
 4.3 Whitney stratifications .. 67
 4.4 Fundamental properties of Whitney stratifications 69
 4.5 Poincaré homomorphism .. 71
 4.6 Alexander isomorphism ... 72
 4.6.1 Cellular tubes ... 72

5 Poincaré–Hopf Theorem (singular varieties) 75
 5.1 Introduction .. 75
 5.2 Why the radial vector fields? 76
 5.3 Why the dual cells decomposition? 80
 5.4 Radial vector fields .. 81
 5.4.1 Radial vector fields – Local construction 81
 5.4.2 Radial vector fields – Global construction 84
 5.4.3 Poincaré–Hopf Theorem for singular varieties 86
6 Schwartz classes

6.1 Radial extension of frames 89
 6.1.1 Local radial extension of r-frames 89
 6.1.2 Global radial extension of r-frames 90
6.2 Obstruction cocycles and classes 92

7 MacPherson classes

7.1 Nash transformation .. 93
7.2 Local Euler obstruction 95
7.3 Constructible sets and functions 97
7.4 Mather classes .. 98
7.5 MacPherson classes .. 98

8 Developments and perspectives 103

8.1 Remarks and complements. 103
8.2 About the fundamental Chern article. 104
8.3 The polar varieties and Mather classes 105
8.4 More developments of Chern classes for singular varieties 106
 8.4.1 Bivariant classes 106
 8.4.2 Other generalizations of classes in the singular case.. 107
 8.4.3 Hirzebruch formalism 108
8.5 The Euler local obstruction 108
8.6 Some applications in other mathematical domains and in theoretical physics. 108

Bibliography .. 110

Index of Authors ... 117

Index .. 120
List of Figures

1.1 Triangulations of the sphere. ... 2
1.2 The Whitney umbrella. .. 4
1.3 The pinched torus and the suspension of the torus 6
1.4 Compatible orientations. .. 7
1.5 The double cone. ... 7
1.6 Dual cells 1. .. 11
1.7 Dual cells 2. ... 12

2.1 The Pythagoras polyhedra. ... 25
2.2 The Theaetetus polyhedra .. 25
2.3 Hexahedra, (6 faces) and 5,6,7 ou 8 vertices 28
2.4 The map $\mathbb{S}^{n-1} \to \mathbb{R}^n \setminus \{0\}$. 33
2.5 Vector fields in dimension 2. .. 34
2.6 Singularity of second type ($n = 2$). 35
2.7 The ε-neighbourhood of M 38
2.8 The vector field $w(x)$. ... 39
2.9 Vector fields on the sphere and the torus. 41
2.10 Barycenters and barycentric subdivision K'. 42
2.11 The Hopf vector field H in a triangle $[\hat{0}, \hat{1}, \hat{2}]$. 42
2.12 Poincaré–Hopf Theorem for the real projective plane. 43

3.1 The map $pr_2 \circ v^{(r)} : \mathbb{S}^{k-1} \to V_r(\mathbb{K}^n)$. 50
Defining the birth of characteristic classes is not clear.

Who of Pythagoras, Plato, Maurolico, Descartes, Euler, Poincaré, Hopf... can be considered as the creator of the characteristic classes?

This is the reason why I invite you during the course for a cruise in which we will meet these people and others... who will share their contribution with us.

Our cruise starts on the island of Samos, Greece in 570 BC where we meet Pythagoras playing with representations of the tetrahedron, the hexahedron (cube) and the octahedron. Thales comes from Miletus not far from the island to play with us. We leave the island for Athens where we meet Theaetetus, less known than Plato, although he is the finder of the 5 platonic polyhedra.

After playing with the polyhedra, through the Mediterranean Sea we leave Greece for Sicily where we have a walk on the Syracuse beach with Archimedes in 230 BC. Still in Sicily, in Messina, much later, in December 26, 1537, we meet an Italian priest, Francesco Maurolico who, apparently does not care of the war between Charles V and the Pope against the Turks and prefers to spend his time describing the planar representations of the platonic polyhedra. Maurolico tells us that he observed that the 5 platonic polyhedra satisfy the formula:

\[
\text{#vertices} - \text{#edges} + \text{#faces} = +2.
\]

The boat takes us to Stockholm, in January 1650, where Descartes is invited by the Queen Christina of Sweden. Descartes is very ill. He entrusts us with his manuscripts, containing among other things a “nice theorem”. When Descartes dies, few days later, we take the boat which transports his manuscripts to Paris in
A safe. Arriving in Paris, the boat sinks (do you know how to swim?). Fortunately, after 3 days in the river Seine, the safe is recovered, allowing later Leibniz to copy Descartes’ manuscripts and to take these copies to Hanover in Germany.

Still in Germany, in 1750 we go to the Jean-Sebastien Bach’s funerals. Then in Berlin, on November 14, we meet Euler who just sent a letter to his friend Goldbach saying that he discovered the formula that now bears his name, this for all convex polyhedra in \mathbb{R}^3. The formula appears now in fact as a corollary of the theorem that Descartes showed us.

We return in Paris, in 1885, for the Victor Hugo’s funerals. Poincaré is there and he says us that he has been able to generalize the Euler characteristic for all dimensions. We stay in Paris to follow the construction of the Eiffel Tower and of the first metro line. We meet again Poincaré in 1899 who tells us that the characteristic, now called Euler–Poincaré, is the obstruction to the construction of a vector field tangent to a compact smooth surface.

Back in Berlin, in 1927, we go to the cinema to see the new silent film “Metropolis” by Fritz Lang. We are sitting next to Hopf who invites us to know how he generalizes the Poincaré result for all dimensions, obtaining the now called Poincaré–Hopf theorem.

Hopf advises his student Stiefel to study the obstruction to construct an r-frame tangent to a smooth manifold. For us, we continue our cruise, this time on the liner “Normandie”, on May 29, 1935 for its inaugural crossing to USA. In a festive atmosphere, he wins the “blue ribbon”. We reach Weston, where Whitney shows us around his marvelous house. He takes us to climb the peaks of Massachusetts (don’t you feel dizzy?). Whitney tells us that he has a similar construction to the Stiefel’s one. The Stiefel–Whitney classes are born.

We stay in the United States during WWII and Chern invites us to Princeton in 1946 to read us his poems and tell us how he constructs, in the complex setting, the “Chern classes” in so many ways, not just using the obstruction theory but also, among others, by decomposition of Grassmannian manifolds into Schubert cycles and by differential forms. Chern gets us so excited that we forget our cruise. He suggests us to follow evolution of the theories: Chern–Gauß–Bonnet, Chern–Weil, Chern–Simons.

Back in France, in 1965, we take the train from Paris to Lille in which we meet a woman making strange drawings on sheets of paper. Marie-Hélène Schwartz explains to us that she understood why, in general, the Poincaré–Hopf Theorem does not work for singular varieties and, radiant, she explains to us that we must
consider radial fields, making the picture of a pinched torus and folding another sheet of paper. Moreover, she tells us to be able to define Chern classes for singular varieties, using what she calls “Whitney stratifications”.

Four years later, in IHES in Paris, Deligne and Grothendieck conjecture existence and uniqueness of Chern classes for singular varieties, satisfying a system of axioms. The conjecture is proved by Robert MacPherson in 1973. In Paris, Marie-Hélène Schwartz enters in a small clothing store on the Boulevard Saint Michel to buy a shirt for her husband, Laurent. By chance, MacPherson also walks into the same cramped store. No place for us, but we can hear the discussion about characteristic classes ending by a “they must be the same”. They are the same and that has been proved by Marie-Hélène Schwartz and myself. We use one ingredient, defined by MacPherson, the “local Euler obstruction”.

Now, we go to Brasil ! MacPherson gave a lecture during the 9th Colóquio Brasileiro de Matemática, that was in 1973 in Poços de Caldas. We are now at the... 33th Colóquio Brasileiro de Matemática ! The cruise is not finished, there are many researchers, women and men, working on the characteristic classes and on the developments of the local Euler obstruction in Brasil and other countries. The story will continue, with you?

Readers interested in deepening their knowledge in the subject of characteristic classes can consult, for the smooth case, the books by Dieudonné (1989) and Steenrod (1951), the book by Milnor and Stasheff (1974) “characteristic classes” and, for the case of singular varieties, the forthcoming article by the author to appear in the Handbook of Geometry and Topology of Singularities volume III. Springer.

Eu dedico o curso a Roberto Callejas-Bedregal, falecido do covid em Abril. Jamais esqueceremos sua alegria comunicativa de trabalhar em matemática.

Agradeço ao 33º comitê CBM por me dar a honra de ministrar este curso. Agradeço a todas as pessoas que me ajudaram a escrever o livro do curso e a fazer os vídeos: matemáticos, responsáveis, secretárias, administradores, editores e técnicos.

Muito obrigado a Carolina, Thuy, Paulo, Suely, Leticia, Anderson,…Obrigado a todos por sua ajuda.

Jean-Paul Brasselet
Julho de 2021
1 Introduction

1.1 Manifolds and pseudomanifolds

In the following, we recall basic, and useful, notions about manifolds. In this section and the following ones, unless explicit mention, all considered (pseudo) manifolds are connected.

One of the fundamental notion that we will use is the one of triangulation of the considered spaces, that is done through the notion of simplicial complex.

A simplex is the convex hull of \(k \) linearly independent points in the euclidean space \(\mathbb{R}^m \). A \(\ell \)-dimensional face of the simplex is the convex hull of \(\ell + 1 \) of these points, \(\ell \leq k \).

Definition 1.1.1. A (finite) simplicial complex \(K \) is a collection of simplexes in some euclidean space \(\mathbb{R}^m \) such that

- if \(s \in K \) then every face of \(s \) belongs to \(K \),

- if \(s, t \in K \), then \(s \cap t \) is either empty or is a common face of \(s \) and \(t \).

Definition 1.1.2. Let us denote by \(K \) a (finite) simplicial complex in \(\mathbb{R}^m \). The union of simplexes in \(K \) is a compact subspace of \(\mathbb{R}^m \) denoted by \(|K| \) and called geometric realisation of \(K \), or polyhedron associated to \(K \).
Definition 1.1.3. A topological space X is *triangulable* (or a polyhedron) if there exists a simplicial complex K and a homeomorphism $h : |K| \rightarrow X$. Such a pair (K, h), or simply the simplicial complex K, is called a *triangulation* of X.

![Triangulation of the sphere](image)

Figure 1.1: Triangulations of the sphere.
In the planar representations, the segments with same name are identified respecting the orientation.

Remark 1.1.4. Not all topological spaces are triangulable (see Verona (1984)).

Let K be a simplicial complex, and x a point in the polyhedron $|K|$. The simplicial neighbourhood of x in K, denoted by $N_K(x)$ is the set of (closed) simplexes that contain x together with their faces. The link of x, denoted by $Lk_K(x)$ is the subset of simplexes in $N_K(x)$ that do not contain x. The i-skeleton of K, denoted by $K^{(i)}$, is the set of (K)-simplices whose dimension is less or equal to i.

Definition 1.1.5. (Combinatorial manifold) A polyhedron $|K|$ is called a *combinatorial n-manifold* if for each $x \in |K|$, the link $|Lk_K(x)|$ is homeomorphic to the sphere S^{n-1}.
Títulos Publicados — 33º Colóquio Brasileiro de Matemática

Geometria Lipschitz das singularidades – Lev Birbrair e Edvalter Sena
Combinatória – Fábio Botler, Maurício Collares, Taisa Martins, Walner Mendonça, Rob Morris e Guilherme Mota
Códigos Geométricos – Gilberto Brito de Almeida Filho e Saeed Tafazolian
Topologia e geometria de 3-variedades – André Salles de Carvalho e Rafał Marian Siejakowski
Ciência de Dados: Algoritmos e Aplicações – Luerbio Faria, Fabiano de Souza Oliveira, Paulo Eustáquio Duarte Pinto e Jayme Luiz Szwarcfiter
Discovering Euclidean Phenomena in Poncelet Families – Ronaldo A. García e Dan S. Reznik
Introdução à geometria e topologia dos sistemas dinâmicos em superfícies e além – Víctor León e Bruno Scárdua
Equações diferenciais e modelos epidemiológicos – Marlon M. López-Flores, Dan Marchesin, Vítor Matos e Stephen Schecter
Differential Equation Models in Epidemiology – Marlon M. López-Flores, Dan Marchesin, Vitor Matos e Stephen Schecter
A friendly invitation to Fourier analysis on polytopes – Sinai Robins
PI-álgebras: uma introdução à PI-teoria – Rafael Bezerra dos Santos e Ana Cristina Vieira
First steps into Model Order Reduction – Alessandro Alla
The Einstein Constraint Equations – Rodrigo Avalos e Jorge H. Lira
Dynamics of Circle Mappings – Edson de Faria e Pablo Guarino
Statistical model selection for stochastic systems – Antonio Galves, Florencia Leonardi e Guilherme Ost
Transfer Operators in Hyperbolic Dynamics – Mark F. Demers, Niloofar Kiamari e Carlangelo Liverani
A Course in Hodge Theory Periods of Algebraic Cycles – Hossein Movasati e Roberto Villaflor Loyola
A dynamical system approach for Lane–Emden type problems – Liliane Maia, Gabrielle Nornberg e Filomena Pacella
Visualizing Thurston’s Geometries – Tiago Novello, Vinicius da Silva e Luiz Velho
Scaling Problems, Algorithms and Applications to Computer Science and Statistics – Rafael Oliveira e Akshay Ramachandran
An Introduction to Characteristic Classes – Jean-Paul Brasselet